Department of Computer Science <u>SEMESTER-III</u> <u>CC-5 (Theory): Data Structures</u>

The	ory: 60 Lectures	Credit: 4		
	Arrays	(5 L)		
	Single and Multi-dimensional Arrays, Sparse Matrices (Array and			
1.	Linked Representation)			
	Stacks	(5 L)		
2.	Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix expressions, Utility and conversion of these expressions from one to another; Applications of stack;			
4.	Limitations of Array representation of stack			
	Linked Lists	(10 L)		
	Singly, Doubly and Circular Lists (Array and Linked representation); N Circular	Normal and		
3.	representation of Stack in Lists; Self Organizing Lists; Skip Lists			
	Queues	(5 L)		
	Array and Linked representation of Queue, De-queue, Priority Queues,	,		
4.	Queue using Stack			
	Recursion	(5 L)		
	Developing Recursive Definition of Simple Problems and their implementation;			
	Advantages			
_	and Limitations of Recursion; Understanding what goes behind Recurs	sion (Internal Stack		
5.	Implementation)			
	Trees	(20 L)		
	Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion, Recursive and			
	Iterative Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion,			
6.	Traversals);			
	Searching and Sorting	(5 L)		
	Linear Search, Binary Search, Comparison of Linear and Binary Search			
7.	Bubble Sort, Insertion Sort, Shell Sort, Comparison of Sorting Technic	lues		
	HASHING:	C		
	Introduction to Hashing, Deleting from Hash Table, Efficiency o			
	Rehash Methods, Hash Table Reordering, Resolving collusion by Open Addressing Coolesced Hashing Separate Chaining Dynamic and			
	Addressing, Coalesced Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash Function, Perfect Hashing			
	Function	5		
8.		(5 L)		

CC-6: Operating Systems

Theory: 60 Lectures

Credit:4

1. Introduction	10L
Basic OS functions, resource abstraction, types of operating systems-	
multiprogramming systems, batch systems , time sharing systems;	
operating systems for personal computers & workstations, process	
control & real time systems.	
2. Operating System Organization	6L
Processor and user modes, kernels, system calls and system programs.	
3. Process Management	20L
System view of the process and resources, process abstraction, process	
hierarchy, threads, threading issues, thread libraries; Process Scheduling,	
non-pre-emptive and pre-emptive scheduling algorithms; concurrent and	
processes, critical section, semaphores, methods for inter-process	
communication; deadlocks.	
4. Memory Management	10L
(10L)	
Physical and virtual address space; memory allocation strategies -fixed	
and variable partitions,	
paging, segmentation, virtual memory	
5. File and I/O Management	10L
Directory structure, file operations, file allocation methods, device	
management.	
6. Protection and Security	4 L
Policy mechanism, Authentication, Internal access Authorization.	

CC-7: Computer Networks

Theory: 60 Lectures	Credit: 4
1. Introduction to Computer Networks	8L
Network definition; network topologies; network classifications; network protocol; layered network architecture; overview of OSI reference model; overview of TCP/IP protocol suite.	
2. Data Communication Fundamentals and Techniques	10L
Analog and digital signal; data-rate limits; digital to digital line encoding schemes; pulse code modulation; parallel and serial transmission; digital to analog modulation-; multiplexing techniques- FDM, TDM; transmission media (twisted-pair, coaxial-cable, fibre-optic cable), satellite communications.	
3. Network Switching Techniques and Access mechanisms	10L
Circuit switching; packet switching- connectionless datagram switching, connection- oriented virtual circuit switching; dial-up modems; digital subscriber line; cable TV for data transfer.	
4. Data Link Layer Functions and Protocol	10L
Error detection and error correction techniques (CRC, Hamming-codes); data-link control- framing and flow control; error recovery protocols- stop and wait ARQ, go-back-n ARQ; Point to Point Protocol on Internet.	
5. Multiple Access Protocol and Networks	5L
ALOHA & CSMA protocols; CDMA; Ethernet LANs; connecting LAN and back- bone networks- repeaters, hubs, switches, bridges, router and gateways;	
6. Networks Layer Functions and Protocols	5L
Routing; static and dynamic routing algorithms; network layer protocol of Internet- IP protocol, Internet control protocols.	-
7. Transport Layer Functions and Protocols	5L
Transport services- error and flow control, Connection establishment and release- three way handshake, TCP and UDP.	
8. Overview of Application layer protocol	5L
Overview of DNS protocol; overview of WWW & HTTP protocol.	

<u>SEC-1</u>

SEC-1: Programming in Python Theory: 15 Lectures

.

(1 Th. + 2 Labs) Credit: 1

Planning the Computer Program: Concept of problem solving, Problem definition, Program design, Debugging, Types of errors in programming, Documentation.	(2L)	
Techniques of Problem Solving: Flowcharting, decision table, algorithms, Structured programming concepts, Programming methodologies viz. top-down and bottom-up programming.	(2 L)	
Overview of Programming: Structure of a Python Program, Elements of Python	(3 L)	
Introduction to Python: Python Interpreter, Using Python as calculator, Python shell, Indentation. Atoms, Identifiers and keywords, Literals, Strings, Operators(Arithmetic operator, Relational operator, Logical or Boolean operator, Assignment, Operator, Ternary operator, Bit wise operator, Increment or Decrement operator).	(4L)	
Creating Python Programs : Input and Output Statements, Control		
statements(Branching, Looping, Conditional Statement, Exit function, Difference		
between break, continue and pass.),		
Defining Functions, default arguments		

SEC-1: R-Programming
Theory: 15 Lectures(1 Th.+2 Labs)
Credit: 1Introduction: Overview and History of R, Getting Help, Data Types,
Subsetting, Vectorized Operations, Reading and Writing Data.(5L)Control Structures, Functions, lapply, tapply, split, mapply, apply, Coding
Standards.(5L)Scoping Rules, Debugging Tools, Simulation, R Profiler.(5L)

<u>SEMESTER – IV</u>

CC-8 (Theory): Design and Analysis of Algorithms

Theory: 60 Lectures

Credit: 4

1. Introduction	(5 L)
	. ,
Basic Design and Analysis techniques of Algorithms, Correctness of Algorithm.	
2. Algorithm Design Techniques	(8 L)
Iterative techniques, Divide and Conquer (Karatsuba integer multiplication,	
Strassen's matrix multiplication, etc.), Dynamic Programming (Convex hull, DFT	
& FFT), Greedy Algorithms (Knapsack, Denomination of notes/coins), Scheduling.	(17 1)
3. Sorting and Searching Techniques	(17 L)
Elementary sorting techniques- Merge Sort, Advanced Sorting techniques - Heap	
Sort, Quick Sort, Sorting in Linear Time - Bucket Sort, Radix Sort and Count Sort,	
Searching Techniques, Medians & Order Statistics, complexity analysis.	(
4. Lower Bounding Techniques: Decision Trees	(2 L)
5. Balanced Trees: AVL Trees, Red-Black Trees	(10 L)
6. Advanced Analysis Technique: Amortized analysis	(5 L)
7. Graphs	(5 L)
7. Graphs	(3 L)
Graph Algorithms–Breadth First Search, Depth First Search and its Applications,	
Minimum Spanning Trees (Prim, Kruskal), Shortest Paths (Dijkstra, Bellman-Ford,	
Floyd-Warshall).	
8.String Processing: String Matching, Edit Distance, Document distance, Rabin-	(5 L)
Karp, KMP, Boyer-Moore Techniques	(3 L)
Kaip, Kivii, boyet-woole reciliques	
9.Cryptographic algorithms and Overview of complexity Classes: Basic	(3 L)
cryptographic algorithms like DSA, RSA; P, NP, NP-Hard, NP-Complete	(0 12)
ergeoscience algorithms into Dori, tori, r, rit, rit ritud, rit complete	

<u>CC-9: Software Engineering</u>

eory: 60 Lectures	Credit: 4
1. Introduction	(8L)
The Evolving Role of Software, Software Characteristics, Changing Nature	
ofSoftware, Software Engineering as a Layered Technology, Software	
Process Framework, Framework and Umbrella Activities, Process Models,	
Capability Maturity Model Integration (CMMI).	
2.Requirement Analysis	(10L)
Software Requirement Analysis, Initiating Requirement Engineering	
Process, Requirement Analysis	
and Modeling Techniques, Flow	
Oriented	
Modeling, Need for SRS, Characteristics and	
Components of SRS.	
3.Software Project Management	(8L)
Estimation in Project Planning Process,	
Project Scheduling.	
2. Risk Management	(8 L)
Software Risks, Risk Identification, Risk Projection and Risk	
Refinement, RMMM Plan.	
5.Quality Management	(8 L)
Quality Concepts, Software Quality Assurance, Software Reviews, Metrics	
for Process and	
Projects.	
6. Design Engineering	(10 L)
Design Concepts, Architectural	
Design Elements, Software	
Architecture, Data Design at the	
Architectural Level and Component Level, Mapping of Data Flow into	
Software Architecture, Modeling Component Level Design.	
7. Testing Strategies & Tactics	(8 L)

CC-10: Database Management Systems

Theory: 60 Lectures

Credit: 4			
	(6L)		
1.Introduction Characteristics of database approach, data models, database system architecture and data independence.			
2.Entity Relationship (ER) Modeling	(8L)		
Entity types, relationships, constraints.			
	(20L)		
3.Relation data model Relational model concepts, relational constraints, relational algebra, SQL queries			
4. Database design Mapping ER/EER model to relational database, functional dependencies, Lossless decomposition, Normal forms (upto BCNF).	(15L)		
5. Transaction Processing ACID properties, concurrency control & recovery	(3L)		
 6. File Structure and Indexing Operations on files, File of Unordered and ordered records, overview of File organizations, Indexing structures for files(Primary index, secondary index, clustering index), Multilevel indexing using B and B+ trees.	(8L)		

<u>SEC-2</u>

PHP Programming Theory: 15 Lectures Credit:

Introduction to PHP: PHP introduction, inventions and versions, important tools and software requirements (like Web Server, Database, Editors etc.) PHP with other technologies, scope of PHP Basic Syntax, PHP variables and constants Types of data in PHP, Expressions, scopes of a variable (local, global) PHP Operators : Arithmetic, Assignment, Relational , Logical operators, Bitwise , ternary and MOD operator.	(3L)
 PHP operator Precedence and associativity Handling HTML form with PHP: Capturing Form Data GET and POST form methods Dealing with multi value fields 	(2L)
 Redirecting a form after submission PHP conditional events and Loops: PHP IF Else conditional statements (Nested IF and Else) Switch case, while ,For and Do While Loop Goto , Break ,Continue and exit 	(3L)
PHP Functions: Function, Need of Function, declaration and calling of a function PHP Function with arguments, Default Arguments in Function Function argument with call by value, call by reference Scope of Function Global and Local	(3L)
 String Manipulation and Regular Expression: Creating and accessing String , Searching & Replacing String Formatting, joining and splitting String , String Related Library functions Use and advantage of regular expression over inbuilt function Use of preg_match(), preg_replace(), preg_split() functions in regular expression 	(2L)

 Array: Anatomy of an Array ,Creating index based and Associative array ,Accessing array Looping with Index based array, with associative array using each() and foreach() Some useful Library function 	(2L)
---	------

SEC-2: UNIX / Linux Programming Labs) Theory: 15 Lectures Credit: 1

(1+2

Introduc		
	hat is linux/unix Operating systems	
	ifference between linux/unix and other operating systems	
	eatures and Architecture	
≻ V	arious Distributions available in the market	(5L)
> In	stallation, Booting and shutdown process	
	ystem processes (an overview)	
> Ex	sternal and internal commands	
> Ci	reation of partitions in OS	
> Pr	ocesses and its creation phases – Fork, Exec, wait	
	anagement and the File System ypes of Users, Creating users, Granting rights	(5L)
-	ser management commands	
	le quota and various file systems available	
	le System Management and Layout, File permissions	(5L)
	ogin process, Managing Disk Quotas	
	inks (hard links, symbolic links)	
Shell in	troduction and Shell Scripting (6L)	
> W	That is shell and various type of shell, Various editors present in linux	
	ifferent modes of operation in vi editor	
	hat is shell script, Writing and executing the shell script	
	nell variable (user defined and system variables)	(2))
-	ystem calls, Using system calls	(6L)
	pes and Filters	
	ecision making in Shell Scripts (If else, switch), Loops in shell	
	inctions	
	tility programs (cut, paste, join, tr, uniq utilities)	
> Pa	attern matching utility (grep)	